FANDOM


$ Total = \sum_{n = 1} ^ {\left \lfloor \frac{1}{4}\displaystyle\sum_{n = 1}^{n-1} \left\lfloor n + 300 \times 2^{n/7} \right\rfloor \right\rfloor - 1} \left( \frac {n} {4} + 75 \times 2 ^ {n/7} \right)=\frac{L(L-1)}{8}+75\cdot \left(\frac{2^{\frac{L}{7}}-2^{\frac{1}{7}}}{2^{\frac{1}{7}}-1} \right) $

$ \pi = \sqrt{12}\sum^\infty_{k=0} \frac{(-3)^{-k}}{2k+1} = \sqrt{12}\sum^\infty_{k=0} \frac{(-\frac{1}{3})^k}{2k+1} = \sqrt{12}\left(1-{1\over 3\cdot3}+{1\over5\cdot 3^2}-{1\over7\cdot 3^3}+\cdots\right) $